High-Level Programming for Medical Imaging on Multi-GPU Systems Using the SkelCL Library
نویسندگان
چکیده
Application development for modern high-performance systems with Graphics Processing Units (GPUs) relies on low-level programming approaches like CUDA and OpenCL, which leads to complex, lengthy and error-prone programs. In this paper, we present SkelCL – a high-level programming model for systems with multiple GPUs and its implementation as a library on top of OpenCL. SkelCL provides three main enhancements to the OpenCL standard: 1) computations are conveniently expressed using parallel patterns (skeletons); 2) memory management is simplified using parallel container data types; 3) an automatic data (re)distribution mechanism allows for scalability when using multi-GPU systems. We use a real-world example from the field of medical imaging to motivate the design of our programming model and we show how application development using SkelCL is simplified without sacrificing performance: we were able to reduce the code size in our imaging example application by 50% while introducing only a moderate runtime overhead of less than 5%.
منابع مشابه
High-Level Programming of Stencil Computations on Multi-GPU Systems Using the SkelCL Library
The implementation of stencil computations on modern, massively parallel systems with GPUs and other accelerators currently relies on manually-tuned coding using low-level approaches like OpenCL and CUDA. This makes development of stencil applications a complex, time-consuming, and error-prone task. We describe how stencil computations can be programmed in our SkelCL approach that combines high...
متن کاملExtending the SkelCL Skeleton Library for Stencil Computations on Multi-GPU Systems
The implementation of stencil computations on modern, massively parallel systems with GPUs and other accelerators currently relies on manually-tuned coding using low-level approaches like OpenCL and CUDA, which makes it a complex, time-consuming, and error-prone task. We describe how stencil computations can be programmed in our SkelCL approach that combines high level of programming abstractio...
متن کاملUsing the SkelCL Library for High-Level GPU Programming of 2D Applications
The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-36949-0_41. Abstract. Application programming for GPUs (Graphics Processing Units) is complex and error-prone, because the popular approaches — CUDA and OpenCL — are intrinsically low-level and offer no special support for systems consisting of multiple GPUs. The SkelCL library offers pre-implemented recurrin...
متن کاملSkelCL: Enhancing OpenCL for High-Level Programming of Multi-GPU Systems
The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-39958-9_24. Abstract. Application development for modern high-performance systems with Graphics Processing Units (GPUs) currently relies on low-level programming approaches like CUDA and OpenCL, which leads to complex, lengthy and error-prone programs. In this paper, we present SkelCL – a high-level programmi...
متن کاملAccelerating high-order WENO schemes using two heterogeneous GPUs
A double-GPU code is developed to accelerate WENO schemes. The test problem is a compressible viscous flow. The convective terms are discretized using third- to ninth-order WENO schemes and the viscous terms are discretized by the standard fourth-order central scheme. The code written in CUDA programming language is developed by modifying a single-GPU code. The OpenMP library is used for parall...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013